
Function for estimating a Random Effects Poisson-Lindley regression model
poisLindRE.RdFunction for estimating a Random Effects Poisson-Lindley regression model
Usage
poisLind.re(
formula,
group_var,
data,
method = "NM",
max.iters = 1000,
print.level = 0,
bootstraps = NULL,
offset = NULL
)Arguments
- formula
an R formula.
- group_var
the grouping variable(s) indicating random effects (e.g., individual ID).
- data
a dataframe that has all of the variables in the
formula.- method
a method to use for optimization in the maximum likelihood estimation. For options, see
maxLik. Note that "BHHH" is not available for this function due to the implementation for the random effects.- max.iters
the maximum number of iterations to allow the optimization method to perform.
- print.level
Integer specifying the verbosity of output during optimization.
- bootstraps
Optional integer specifying the number of bootstrap samples to be used for estimating standard errors. If not specified, no bootstrapping is performed.
- offset
an optional offset term provided as a string.
Value
An object of class `countreg` which is a list with the following components:
model: the fitted model object.
data: the data frame used to fit the model.
call: the matched call.
formula: the formula used to fit the model.
Details
The function poisLindRE is similar to the poisLind
function, but it includes an additional argument group_var that
specifies the grouping variable for the random effects. The function
estimates a Random Effects Poisson-Lindley regression model using
maximum likelihood. It is similar to poisLind, but includes
additional terms to account for the random effects.
The Random Effects Poisson-Lindley model is useful for panel data and assumes that the random effects follow a gamma distribution. The PDF is $$ f(y_{it}|\mu_{it},\theta)=\frac{\theta^2}{\theta+1} \prod_{t=1}^{n_i}\frac{\left(\mu_{it}\frac{\theta(\theta+1)} {\theta+2}\right)^{y_{it}}}{y_{it}!} \cdot \frac{ \left(\sum_{t=1}^{n_i}y_{it}\right)! \left(\sum_{t=1}^{n_i}\mu_{it}\frac{\theta(\theta+1)}{\theta+2} + \theta + \sum_{t=1}^{n_i}y_{it} + 1\right) }{ \left(\sum_{t=1}^{n_i}\mu_{it}\frac{\theta(\theta+1)}{\theta+2} + \theta\right)^{\sum_{t=1}^{n_i}y_{it}+2} } $$
The log-likelihood function is: $$ LL = 2\log(\theta) - \log(\theta+1) + \sum_{t=1}^{n_i} y_{it}\log(\mu_{it}) + \sum_{t=1}^{n_i} y_{it}\log\!\left( \frac{\theta(\theta+1)}{\theta+2} \right) - \sum_{t=1}^{n_i}\log(y_{it}!) + \log\!\left( \left(\sum_{t=1}^{n_i}y_{it}\right)! \right) + \log\!\left( \sum_{t=1}^{n_i}\mu_{it}\frac{\theta(\theta+1)}{\theta+2} + \theta + \sum_{t=1}^{n_i}y_{it} + 1 \right) - \left(\sum_{t=1}^{n_i}y_{it} + 2\right) \log\!\left( \sum_{t=1}^{n_i}\mu_{it}\frac{\theta(\theta+1)}{\theta+2} + \theta \right) $$
The mean and variance are: $$\mu_{it}=\exp(X_{it} \beta)$$ $$ V(\mu_{it})=\mu_{it}+ \left(1-\frac{2}{(\theta+2)^2}\right)\mu_{it}^2 $$
Examples
# \donttest{
data("washington_roads")
washington_roads$AADTover10k <-
ifelse(washington_roads$AADT > 10000, 1, 0)
poislind.mod <- poisLind.re(
Animal ~ lnaadt + lnlength + speed50 +
ShouldWidth04 + AADTover10k,
data = washington_roads,
group_var = "ID",
method = "NM",
max.iters = 1000
)
#> Warning: NaNs produced
summary(poislind.mod)
#> Call:
#> Animal ~ lnaadt + lnlength + speed50 + ShouldWidth04 + AADTover10k
#>
#> Method: poisLindRE
#> Iterations: 1002
#> Convergence: iteration limit exceeded
#> Log-likelihood: 91004.96
#>
#> Parameter Estimates:
#> # A tibble: 7 × 7
#> parameter coeff `Std. Err.` `t-stat` `p-value` `lower CI` `upper CI`
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) -5.55 0.151 -36.6 0 -5.84 -5.25
#> 2 lnaadt 0.175 0.018 9.44 0 0.138 0.211
#> 3 lnlength 8.67 0.262 33.1 0 8.16 9.19
#> 4 speed50 4.26 0.131 32.5 0 4.00 4.52
#> 5 ShouldWidth04 -2.92 0.262 -11.1 0 -3.43 -2.40
#> 6 AADTover10k 11.8 0.262 45.2 0 11.3 12.4
#> 7 ln(theta) -46.6 NA NA NA NA NA
# }