This function calculates the Akaike Information Criterion (AIC) for a given
model.
Arguments
- LL
Numeric value representing the log-likelihood of the model.
- nparam
Numeric value representing the number of parameters in the
model.
Value
Numeric value representing the AIC.
Details
The AIC is calculated using the formula:
$$AIC = -2 \cdot LL + 2 \cdot nparam$$
Where \(LL\) is the log-likelihood of the model and \(nparam\) is the
number of parameters.
Examples
LL <- -120.5
nparam <- 5
myAIC(LL, nparam)
#> [1] 251