
Poisson-Lindley-Lognormal Distribution
PoissonLindleyLognormal.RdThese functions provide density, distribution, quantile, and random generation for the Poisson-Lindley-Lognormal (PLL) Distribution.
Usage
dplindLnorm(
x,
mean = 1,
theta = 1,
sigma = 1,
ndraws = 1500,
log = FALSE,
hdraws = NULL
)
pplindLnorm(
q,
mean = 1,
theta = 1,
lambda = NULL,
sigma = 1,
ndraws = 1500,
lower.tail = TRUE,
log.p = FALSE
)
qplindLnorm(p, mean = 1, theta = 1, sigma = 1, ndraws = 1500, lambda = NULL)
rplindLnorm(n, mean = 1, theta = 1, sigma = 1, ndraws = 1500, lambda = NULL)Arguments
- x
numeric value or vector of values.
- mean
mean (>0).
- theta
Poisson-Lindley theta parameter (>0).
- sigma
lognormal sigma parameter (>0).
- ndraws
number of Halton draws.
- log
return log-density.
- hdraws
optional Halton draws.
- q
quantile or vector of quantiles.
- lambda
optional lambda parameter (>0).
- lower.tail
TRUE returns P[X $$\leq$$ x].
- log.p
return log-CDF.
- p
probability or vector of probabilities.
- n
number of random draws.
Details
The PLL is a 3-parameter count distribution that captures high mass at small y and allows flexible heavy tails.
dplind computes the PLL density.
pplind computes the PLL CDF.
qplind computes quantiles.
rplind generates random draws.
The PMF is: $$ f(y|\mu,\theta,\sigma)=\int_0^\infty \frac{\theta^2\mu^y x^y(\theta+\mu x+y+1)} {(\theta+1)(\theta+\mu x)^{y+2}} \frac{\exp\left(-\frac{\ln^2(x)}{2\sigma^2}\right)} {x\sigma\sqrt{2\pi}}dx $$
Mean: $$ E[y]=\mu=\frac{\lambda(\theta+2)e^{\sigma^2/2}} {\theta(\theta+1)} $$
Halton draws are used to evaluate the integral.
dplindLnorm gives the density, pplindLnorm gives the distribution function, qplindLnorm gives the quantile function, and rplindLnorm generates random deviates.
The length of the result is determined by n for rplindLnorm, and is the maximum of the lengths of the numerical arguments for the other functions.
Examples
dplindLnorm(0, mean=0.75, theta=7, sigma=2, ndraws=10)
#> [1] 0.6072274
pplindLnorm(0:10, mean=0.75, theta=7, sigma=2, ndraws=10)
#> [1] 0.6072274 0.7717043 0.8450268 0.8859278 0.9117652 0.9294614 0.9422986
#> [8] 0.9520167 0.9596144 0.9657016 0.9706706
qplindLnorm(c(0.1,0.5,0.9), lambda=4.67, theta=7, sigma=2)
#> [1] 0 3 61
rplindLnorm(5, mean=0.75, theta=7, sigma=2)
#> [1] 6 0 0 0 0