
Poisson-Lindley Distribution
PoissonLindley.RdThese functions provide density, distribution function, quantile function, and random number generation for the Poisson-Lindley (PL) Distribution
Usage
msg1
dplind(x, mean = 1, theta = 1, lambda = NULL, log = FALSE)
pplind(q, mean = 1, theta = 1, lambda = NULL, lower.tail = TRUE, log.p = FALSE)
qplind(p, mean = 1, theta = 1, lambda = NULL)
rplind(n, mean = 1, theta = 1, lambda = NULL)Arguments
- x
numeric value or a vector of values.
- mean
numeric value or vector of mean values for the distribution (the values have to be greater than 0).
- theta
single value or vector of values for the theta parameter of the distribution (the values have to be greater than 0).
- lambda
alternative parameterization (use instead of the mean); numeric value or vector of values for lambda parameter of the distribution (the values have to be greater than 0).
- log
logical; if TRUE, probabilities p are given as log(p).
- q
quantile or a vector of quantiles.
- lower.tail
logical; if TRUE, probabilities p are \(P[X\leq x]\) otherwise, \(P[X>x]\).
- log.p
logical; if TRUE, probabilities p are given as log(p).
- p
probability or a vector of probabilities.
- n
the number of random numbers to generate.
Details
The Poisson-Lindley is a 2-parameter count distribution that captures high densities for small integer values. This makes it ideal for data that are zero-inflated.
dplind computes the density (PDF) of the Poisson-Lindley Distribution.
pplind computes the CDF of the Poisson-Lindley Distribution.
qplind computes the quantile function of the Poisson-Lindley
Distribution.
rplind generates random numbers from the Poisson-Lindley Distribution.
The compound Probability Mass Function (PMF) for the Poisson-Lindley (PL) distribution is: $$f(y| \theta, \lambda) = \frac{\theta^2 \lambda^y (\theta + \lambda + y + 1)} {(\theta + 1)(\theta + \lambda)^{y + 2}}$$
Where \(\theta\) and \(\lambda\) are distribution parameters with the restrictions that \(\theta > 0\) and \(\lambda > 0\), and \(y\) is a non-negative integer.
The expected value of the distribution is: $$\mu=\frac{\lambda(\theta + 2)}{\theta(\theta + 1)}$$
The default is to use the input mean value for the distribution. However, the lambda parameter can be used as an alternative to the mean value.
Examples
dplind(0, mean = 0.75, theta = 7)
#> [1] 0.57
pplind(c(0, 1, 2, 3, 5, 7, 9, 10), mean = 0.75, theta = 7)
#> [1] 0.5700000 0.8160000 0.9216000 0.9667200 0.9940608 0.9989514 0.9998165
#> [8] 0.9999235
qplind(c(0.1, 0.3, 0.5, 0.9, 0.95), lambda = 4.67, theta = 7)
#> [1] 0 0 0 2 3
rplind(30, mean = 0.75, theta = 7)
#> [1] 0 0 1 0 0 0 0 0 0 0 1 1 2 0 1 3 1 4 0 1 1 0 1 0 0 0 0 0 1 1