
Poisson-Inverse-Gaussian Distribution
PoissonInverseGaussian.RdThese functions provide the density function, distribution function, quantile function, and random number generation for the Poisson-Inverse-Gaussian (PInvGaus) Distribution.
These functions provide the density function, distribution function, quantile function, and random number generation for the Poisson-Inverse-Gaussian (PInvGaus) Distribution
Usage
dpinvgaus(x, mu = 1, eta = 1, form = "Type 1", log = FALSE)
ppinvgaus(
q,
mu = 1,
eta = 1,
form = "Type 1",
lower.tail = TRUE,
log.p = FALSE
)
qpinvgaus(p, mu = 1, eta = 1, form = "Type 1")
rpinvgaus(n, mu = 1, eta = 1, form = "Type 1")
dpinvgaus(x, mu = 1, eta = 1, form = "Type 1", log = FALSE)
ppinvgaus(
q,
mu = 1,
eta = 1,
form = "Type 1",
lower.tail = TRUE,
log.p = FALSE
)
qpinvgaus(p, mu = 1, eta = 1, form = "Type 1")
rpinvgaus(n, mu = 1, eta = 1, form = "Type 1")Arguments
- x
numeric value or a vector of values.
- mu
numeric value or vector of mean values for the distribution (the values have to be greater than 0).
- eta
single value or vector of values for the scale parameter of the distribution (the values have to be greater than 0).
- form
optional parameter indicating which formulation to use. Options include "Type 1" which is the standard form or "Type 2" which follows the formulation by Dean et. al. (1987).
- log
logical; if TRUE, probabilities p are given as log(p).
- q
quantile or a vector of quantiles.
- lower.tail
logical; if TRUE, probabilities p are \(P[X\leq x]\) otherwise, \(P[X>x]\).
- log.p
logical; if TRUE, probabilities p are given as log(p).
- p
probability or a vector of probabilities.
- n
the number of random numbers to generate.
Details
The Poisson-Inverse-Gaussian distribution is a special case of the Sichel distribution (Cameron & Trivedi, 2013). It is also known as a univariate Sichel distribution (Hilbe, 2011).
dpinvgaus computes the PDF of the Poisson-Inverse-Gaussian dist.
ppinvgaus computes the CDF of the Poisson-Inverse-Gaussian dist.
qpinvgaus computes quantiles of the Poisson-Inverse-Gaussian dist.
rpinvgaus generates random numbers from the distribution.
The PMF (Type 1) is: $$ f(y|\eta,\mu)=\begin{cases} f(0)=\exp\left(\frac{\mu}{\eta}(1-\sqrt{1+2\eta})\right)\\ f(y>0)=f(0)\frac{\mu^y}{y!}(1+2\eta)^{-y/2} \sum_{j=0}^{y-1}\frac{\Gamma(y+j)} {\Gamma(y-j)\Gamma(j+1)} \left(\frac{\eta}{2\mu}\right)^j(1+2\eta)^{-j/2} \end{cases}$$
The variance is: $$\sigma^2=\mu+\eta\mu$$
Type 2 modifies \(\eta\) → \(\eta\mu\): $$ f(0)=\exp\left(\frac{1}{\eta}(1-\sqrt{1+2\eta\mu})\right) $$ $$ f(y>0)=f(0)\frac{\mu^y}{y!}(1+2\eta\mu)^{-y/2} \sum_{j=0}^{y-1}\frac{\Gamma(y+j)} {\Gamma(y-j)\Gamma(j+1)} \left(\frac{\eta}{2}\right)^j(1+2\eta\mu)^{-j/2} $$
Resulting variance: $$\sigma^2=\mu+\eta\mu^2$$
dpinvgaus gives the density, ppinvgaus gives the distribution function, qpinvgaus gives the quantile function, and rpinvgaus generates random deviates.
The length of the result is determined by n for rpinvgaus, and is the maximum of the lengths of the numerical arguments for the other functions.
The Poisson-Inverse-Gaussian distribution is a special case of the Sichel distribution, as noted by Cameron & Trivedi (2013). It is also known as a univariate Sichel distribution (Hilbe, 2011).
dpinvgaus computes the density (PDF) of the Poisson-Inverse-Gaussian
Distribution.
ppinvgaus computes the CDF of the Poisson-Inverse-Gaussian
Distribution.
qpinvgaus computes the quantile function of the
Poisson-Inverse-Gaussian Distribution.
rpinvgaus generates random numbers from the Poisson-Inverse-Gamma
Distribution.
The compound Probability Mass Function (PMF) for the Poisson-Inverse-Gaussian distribution (Type 1) is (Cameron & Trivedi, 2013): $$f(y|\eta,\mu) = \begin{cases} f(y = 0) = \exp \left( \frac{\mu}{\eta} \left(1-\sqrt{1 + 2\eta}\right)\right) \\ f(y|y>0) = f(y = 0)\frac{\mu^y}{y!}(1 + 2\eta)^{-y / 2} \cdot \sum_{j=0}^{y-1} \frac{\Gamma(y+j)}{\Gamma(y-j)\Gamma(j+1)} \left( \frac{\eta}{2\mu}\right)^2(1 + 2\eta)^{-j / 2} \end{cases}$$
Where \(\eta\) is a scale parameter with the restriction that \(\eta>0\), \(\mu\) is the mean value, and \(y\) is a non-negative integer.
The variance of the distribution is: $$\sigma^2=\mu+\eta\mu$$
The alternative parametrization by Dean et. al. (1987) replaces \(\eta\) with \(\eta\mu\). This version (Type 2) has the PMF: $$f(y|\eta,\mu)=\begin{cases} f(y=0) = \exp \left(\frac{1}{\eta} \left(1-\sqrt{1+2\eta\mu}\right) \right) \\ f(y|y > 0) = f(y=0) \frac{\mu^y}{y!} (1+2\eta\mu)^{-y/2} \cdot \sum_{j=0}^{y-1} \frac{\Gamma(y+j)}{\Gamma(y-j)\Gamma(j+1)} \left(\frac{\eta}{2} \right)^2(1+2\eta\mu)^{-j/2} \end{cases}$$
This results in the variance of: $$\sigma^2=\mu+\eta\mu^2$$
References
Cameron & Trivedi (2013). Regression Analysis of Count Data. Dean, Lawless & Willmot (1989). Mixed Poisson–Inverse Gaussian Models. Hilbe (2011). Negative Binomial Regression.
Cameron, A. C., & Trivedi, P. K. (2013). Regression analysis of count data, 2nd Edition. Cambridge university press.
Dean, C., Lawless, J. F., & Willmot, G. E. (1989). A mixed Poisson–Inverse‐Gaussian regression model. Canadian Journal of Statistics, 17(2), 171-181.
Hilbe, J. M. (2011). Negative binomial regression. Cambridge University Press.
Examples
dpinvgaus(1, mu=0.75, eta=1)
#> [1] 0.250067
ppinvgaus(c(0,1,2,3,5,7,9,10), mu=0.75, eta=3, form="Type 2")
#> [1] 0.6386475 0.8428877 0.9173222 0.9512540 0.9797144 0.9904002 0.9951184
#> [8] 0.9964543
qpinvgaus(c(0.1,0.3,0.5,0.9,0.95), mu=0.75, eta=0.5, form="Type 2")
#> [1] 0 0 0 2 3
rpinvgaus(30, mu=0.75, eta=1.5)
#> [1] 3 1 0 0 0 1 6 0 0 0 0 0 1 0 4 0 2 2 0 0 0 0 1 0 0 0 2 3 0 0
dpinvgaus(1, mu=0.75, eta=1)
#> [1] 0.250067
ppinvgaus(c(0,1,2,3,5,7,9,10), mu=0.75, eta=3, form="Type 2")
#> [1] 0.6386475 0.8428877 0.9173222 0.9512540 0.9797144 0.9904002 0.9951184
#> [8] 0.9964543
qpinvgaus(c(0.1,0.3,0.5,0.9,0.95), mu=0.75, eta=0.5, form="Type 2")
#> [1] 0 0 0 2 3
rpinvgaus(30, mu=0.75, eta=1.5)
#> [1] 0 0 11 0 2 0 0 0 0 0 0 0 0 0 0 0 2 0 1 3 0 1 0 0 0
#> [26] 0 1 0 1 0