
Poisson-Inverse-Gamma Distribution
PoissonInverseGamma.RdThese functions provide the density function, distribution function, quantile function, and random number generation for the Poisson-Inverse-Gamma (PInvGamma) Distribution
Usage
dpinvgamma(x, mu = 1, eta = 1, log = FALSE)
ppinvgamma(q, mu = 1, eta = 1, lower.tail = TRUE, log.p = FALSE)
qpinvgamma(p, mu = 1, eta = 1)
rpinvgamma(n, mu = 1, eta = 1)Arguments
- x
numeric value or a vector of values.
- mu
numeric value or vector of mean values for the distribution (the values have to be greater than 0).
- eta
single value or vector of values for the scale parameter of the distribution (the values have to be greater than 0).
- log
logical; if TRUE, probabilities p are given as log(p).
- q
quantile or a vector of quantiles.
- lower.tail
logical; if TRUE, probabilities p are \(P[X\leq x]\) otherwise, \(P[X>x]\).
- log.p
logical; if TRUE, probabilities p are given as log(p).
- p
probability or a vector of probabilities.
- n
the number of random numbers to generate.
Details
dpinvgamma computes the density (PDF) of the Poisson-Inverse-Gamma
Distribution.
ppinvgamma computes the CDF of the Poisson-Inverse-Gama Distribution.
qpinvgamma computes the quantile function of the
Poisson-Inverse-Gamma Distribution.
rpinvgamma generates random numbers from the Poisson-Inverse-Gamma
Distribution.
The compound Probability Mass Function (PMF) for the Poisson-Inverse-Gamma distribution is: $$ f(x|\eta,\mu)=\frac{2\left(\mu\left(\frac{1}{\eta}+1\right)\right)^{ \frac{x+\frac{1}{eta}+2}{2}}}{x!\Gamma\left(\frac{1}{\eta}+2\right)} K_{x-\frac{1}{\eta}-2}\left(2\sqrt{\mu\left(\frac{1}{\eta}+1\right)}\right) $$
Where \(\eta\) is a shape parameter with the restriction that \(\eta>0\), \(\mu>0\) is the mean value, \(y\) is a non-negative integer, and \(K_i(z)\) is the modified Bessel function of the second kind. This formulation uses the mean directly.
The variance of the distribution is: $$\sigma^2=\mu+\eta\mu^2$$
dpinvgamma gives the density, ppinvgamma gives the distribution function, qpinvgamma gives the quantile function, and rcom generates random deviates.
The length of the result is determined by n for rpinvgamma, and is the maximum of the lengths of the numerical arguments for the other functions.
Examples
dpinvgamma(1, mu=0.75, eta=1)
#> [1] 0.2935178
ppinvgamma(c(0,1,2,3,5,7,9,10), mu=0.75, eta=3)
#> [1] 0.5623779 0.8373348 0.9352191 0.9701692 0.9905595 0.9957622 0.9976802
#> [8] 0.9981978
qpinvgamma(c(0.1,0.3,0.5,0.9,0.95), mu=0.75, eta=0.5)
#> [1] 0 0 0 2 3
rpinvgamma(30, mu=0.75, eta=1.5)
#> [1] 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 0 3 1 1 2 4 1 1 1 0 0 0 3 0 0